首页 > 世链号 > 【鲸交所APP苹果版】递归思想:用锅铲给烧饼排序
币圈小鱼儿  

【鲸交所APP苹果版】递归思想:用锅铲给烧饼排序

摘要:烧饼排序是个很有意思的实际问题:假设盘子上有 n 块面积大小不一的烧饼,你如何用一把锅铲进行若干次翻转,让这些烧饼的大小有序(小的在上,大的在下)?

来源:labuladong

烧饼排序是个很有意思的实际问题:假设盘子上有 n 块面积大小不一的烧饼,你如何用一把锅铲进行若干次翻转,让这些烧饼的大小有序(小的在上,大的在下)?

递归思想:用锅铲给烧饼排序

设想一下用锅铲翻转一堆烧饼的情景,其实是有一点限制的,我们每次只能将最上面的若干块饼子同时翻转

递归思想:用锅铲给烧饼排序

我们的问题是,如何使用算法得到一个翻转序列,使得烧饼堆变得有序

首先,这个问题可以抽象成一道算法题,用数组来表示烧饼堆:

递归思想:用锅铲给烧饼排序

如何解决这个问题呢?其实类似上篇文章 递归思维:k 个一组反转链表,这也是需要递归思想的。

一、思路分析

为什么说这个问题有递归性质呢?比如说我们需要实现这样一个函数:

 // cakes 是一堆烧饼,函数会将最上面 n 个烧饼排序 void sort(int[] cakes, int n); 

如果我们找到了前 n 个烧饼中最大的那个,然后设法将这个饼子翻转到最底下:

递归思想:用锅铲给烧饼排序

那么,原问题的规模就可以减小,只需要排序剩下的 n-1 块饼就行了。也就是说递归调用 pancakeSort(A, n-1) 即可:

递归思想:用锅铲给烧饼排序

接下来,对于上面的这 n-1 块饼,如何排序呢?还是先从中找到最大的一块饼,然后把这块饼放到底下,再递归调用 pancakeSort(A, n-1-1)……

你看,这就是递归性质,总结一下思路就是:

1、找到 n 个饼中最大的那个。

2、把这个最大的饼移到最底下。

3、递归调用 pancakeSort(A, n - 1)

base case:n == 1 时,排序 1 个饼时不需要翻转。

那么,最后剩下个问题,如何设法将某块烧饼翻到最后呢

其实很简单,比如第 3 块饼是最大的,我们想把它换到最后,也就是换到第 n 块。可以这样操作:

1、用锅铲将前 3 块饼翻转一下,这样最大的饼就翻到了最上面。

2、用锅铲将前 n 块饼全部翻转,这样最大的饼就翻到了第 n 块,也就是最后一块。

以上两个流程理解之后,基本就可以写出解法了,不过题目要求我们写出具体的反转操作序列,这也很简单,只要在每次翻转烧饼时记录下来就行了。

二、代码实现

只要把上述的思路用代码实现即可,唯一需要注意的是,数组索引从 0 开始,而我们要返回的结果是从 1 开始算的。

 // 记录反转操作序列 LinkedList res = new LinkedList<>(); List pancakeSort(int[] cakes) { sort(cakes, cakes.length); return res; } void sort(int[] cakes, int n) { // base case if (n == 1) return; // 寻找最大饼的索引 int maxCake = 0; int maxCakeIndex = 0; for (int i = 0; i < n; i++) if (cakes[i] > maxCake) { maxCakeIndex = i; maxCake = cakes[i]; } // 第一次翻转,将最大饼翻到最上面 reverse(cakes, 0, maxCakeIndex); res.add(maxCakeIndex + 1); // 第二次翻转,将最大饼翻到最下面 reverse(cakes, 0, n - 1); res.add(n); // 递归调用 sort(cakes, n - 1); } void reverse(int[] arr, int i, int j) { while (i < j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; i++; j--; } } 

通过刚才的详细解释,这段代码应该是很容易理解的。

算法的时间复杂度很容易计算,因为递归调用的次数是 n,每次递归调用都需要一次 for 循环,时间复杂度是 O(n),所以总的复杂度是 O(n^2)。

最后,可以思考一个问题:按照我们这个思路,得出的操作序列长度应该为 2(n - 1),因为每次递归都要进行 2 次翻转并记录操作,总共有 n 层递归,但由于 base case 直接返回结果,不进行翻转,所以最终的操作序列长度应该是固定的 2(n - 1)

显然,这个结果不是最优的(最短的),比如说一堆煎饼 [3,2,4,1],我们的算法得到的翻转序列是 [3,4,2,3,1,2],但是最快捷的翻转方法应该是 [2,3,4]

初始状态 :[3,2,4,1]
翻前 2 个:[2,3,4,1]
翻前 3 个:[4,3,2,1]
翻前 4 个:[1,2,3,4]

如果要求你的算法计算排序烧饼的最短操作序列,你该如何计算呢?或者说,解决这种求最优解法的问题,核心思路什么,一定会使用到什么算法技巧呢?

免责声明
世链财经作为开放的信息发布平台,所有资讯仅代表作者个人观点,与世链财经无关。如文章、图片、音频或视频出现侵权、违规及其他不当言论,请提供相关材料,发送到:2785592653@qq.com。
风险提示:本站所提供的资讯不代表任何投资暗示。投资有风险,入市须谨慎。
世链粉丝群:提供最新热点新闻,空投糖果、红包等福利,微信:juu3644。