【exmo交易所搬砖】五大常用算法:分治算法
来源:红脸书生
https://www.cnblogs.com/steven_oyj/archive/2010/05/22/1741370.html
一、基本概念
在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法 (快速排序,归并排序),傅立叶变换 (快速傅立叶变换)……
任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于 n 个元素的排序问题,当 n=1 时,不需任何计算。n=2 时,只要作一次比较即可排好序。n=3 时只要作 3 次比较即可,…。而当 n 较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。
二、基本思想及策略
分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治策略是:对于一个规模为 n 的问题,若该问题可以容易地解决(比如说规模 n 较小)则直接解决,否则将其分解为 k 个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。
如果原问题可分割成 k 个子问题,1 由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
三、分治法适用的情况
分治法所能解决的问题一般具有以下几个特征:
-
该问题的规模缩小到一定的程度就可以容易地解决
-
该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
-
利用该问题分解出的子问题的解可以合并为该问题的解;
-
该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;
第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;
第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
四、分治法的基本步骤
分治法在每一层递归上都有三个步骤:
step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
step3 合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:
Divide-and-Conquer(P)
1. if |P|≤n0 2. then return(ADHOC(P)) 3. 将 P 分解为较小的子问题 P1 ,P2 ,...,Pk 4. for i←1 to k 5. do yi ← Divide-and-Conquer(Pi) △ 递归解决 Pi 6. T ← MERGE(y1,y2,...,yk) △ 合并子问题 7. return(T)
其中 |P| 表示问题 P 的规模;n0 为一阈值,表示当问题 P 的规模不超过 n0 时,问题已容易直接解出,不必再继续分解。ADHOC(P) 是该分治法中的基本子算法,用于直接解小规模的问题 P。因此,当 P 的规模不超过 n0 时直接用算法 ADHOC(P) 求解。算法 MERGE(y1,y2,...,yk) 是该分治法中的合并子算法,用于将 P 的子问题 P1 ,P2 ,...,Pk 的相应的解 y1,y2,...,yk 合并为 P 的解。
五、分治法的复杂性分析
一个分治法将规模为 n 的问题分成 k 个规模为 n/m 的子问题去解。设分解阀值 n0=1,且 adhoc 解规模为 1 的问题耗费 1 个单位时间。再设将原问题分解为 k 个子问题以及用 merge 将 k 个子问题的解合并为原问题的解需用 f(n) 个单位时间。用 T(n) 表示该分治法解规模为 |P|=n 的问题所需的计算时间,则有:
T (n)= k T(n/m)+f(n)
通过迭代法求得方程的解:
递归方程及其解只给出 n 等于 m 的方幂时 T(n) 的值,但是如果认为 T(n) 足够平滑,那么由 n 等于 m 的方幂时 T(n) 的值可以估计 T(n) 的增长速度。通常假定 T(n) 是单调上升的,从而当 mi≤n
六、可使用分治法求解的一些经典问题
二分搜索
-
大整数乘法
-
Strassen 矩阵乘法
-
棋盘覆盖
-
合并排序
-
快速排序
-
线性时间选择
-
最接近点对问题
-
循环赛日程表
-
汉诺塔
七、依据分治法设计程序时的思维过程
实际上就是类似于数学归纳法,找到解决本问题的求解方程公式,然后根据方程公式设计递归程序。
-
一定是先找到最小问题规模时的求解方法
-
然后考虑随着问题规模增大时的求解方法
-
找到求解的递归函数式后(各种规模或因子),设计递归程序即可。
- 免责声明
- 世链财经作为开放的信息发布平台,所有资讯仅代表作者个人观点,与世链财经无关。如文章、图片、音频或视频出现侵权、违规及其他不当言论,请提供相关材料,发送到:2785592653@qq.com。
- 风险提示:本站所提供的资讯不代表任何投资暗示。投资有风险,入市须谨慎。
- 世链粉丝群:提供最新热点新闻,空投糖果、红包等福利,微信:juu3644。

币圈小鱼儿



