盘古开源解析:分布式存储具体应用场景有哪些?
摘要:相比于传统的中心化服务器的存储方式,分布式存储在存储效率、带宽利用率、安全性、隐私性、访问速度等各方面都有着显著的优势,特别是在高性能计算、大数据视频云及大数据分析等应用场景中有着广泛的应用。
相比于传统的中心化服务器的存储方式,分布式存储在存储效率、带宽利用率、安全性、隐私性、访问速度等各方面都有着显著的优势,特别是在高性能计算、大数据视频云及大数据分析等应用场景中有着广泛的应用。
高性能计算场景
在如气象气候、地质勘探、航空航天、工程计算、材料工程等领域,基于集群的高性能计算,已成为必需的辅助工具。集群系统有极强的伸缩性,可通过在集群中增加或删减节点的方式,在不影响原有应用与计算任务的情况下,随时增加和降低系统的处理能力。根据不同的计算模式与规模,构成集群系统的节点数可以从几个到成千上万个。这些业务对后端的存储系统提出了新的需求,包括统一的存储空间、高效率的文件检索、高带宽的吞吐性能,高可靠的数据安全保障等。
大数据视频云应用场景
随着视频高清技术及超高清技术的普及,视频大数据应用场景,如雪亮工程、平安城市、广电媒资、影视制作、视频网站等领域,对存储设备提出了大容量、高读写性能、高可靠性、低延时及可扩展性等需求。针对这样大规模视频数据应用场景,就需要一个技术先进、性能优越的存储系统作为后端数据存储的支撑者。
大数据分析应用场景
伴随着互联网技术及人工智能的发展,各种基于海量用户/数据/终端的大数据分析及人工智能业务模式不断涌现,同样需要充分考虑存储功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。
在数据爆发增长的“数字时代”,软件定义的分布式存储是存储技术高速发展的结晶,并具有着很大的成长空间,必将应用于更广泛的大数据业务场景。
在如气象气候、地质勘探、航空航天、工程计算、材料工程等领域,基于集群的高性能计算,已成为必需的辅助工具。集群系统有极强的伸缩性,可通过在集群中增加或删减节点的方式,在不影响原有应用与计算任务的情况下,随时增加和降低系统的处理能力。根据不同的计算模式与规模,构成集群系统的节点数可以从几个到成千上万个。这些业务对后端的存储系统提出了新的需求,包括统一的存储空间、高效率的文件检索、高带宽的吞吐性能,高可靠的数据安全保障等。
大数据视频云应用场景
随着视频高清技术及超高清技术的普及,视频大数据应用场景,如雪亮工程、平安城市、广电媒资、影视制作、视频网站等领域,对存储设备提出了大容量、高读写性能、高可靠性、低延时及可扩展性等需求。针对这样大规模视频数据应用场景,就需要一个技术先进、性能优越的存储系统作为后端数据存储的支撑者。
大数据分析应用场景
伴随着互联网技术及人工智能的发展,各种基于海量用户/数据/终端的大数据分析及人工智能业务模式不断涌现,同样需要充分考虑存储功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。
在数据爆发增长的“数字时代”,软件定义的分布式存储是存储技术高速发展的结晶,并具有着很大的成长空间,必将应用于更广泛的大数据业务场景。
- 免责声明
- 世链财经作为开放的信息发布平台,所有资讯仅代表作者个人观点,与世链财经无关。如文章、图片、音频或视频出现侵权、违规及其他不当言论,请提供相关材料,发送到:2785592653@qq.com。
- 风险提示:本站所提供的资讯不代表任何投资暗示。投资有风险,入市须谨慎。
- 世链粉丝群:提供最新热点新闻,空投糖果、红包等福利,微信:juu3644。